Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-[3-(Trifluoromethyl)phenyl]furo[2,3-c]pyridine

Viktor Vrábel,^a* Ľubomír Švorc,^a Ivana Bradiaková,^b Jozef Kožíšek^c and Alžbeta Krutošíková^b

^aInstitute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, ^bDepartment of Chemistry, Faculty of Natural Sciences, University of St. Cyril and Methodius, 917 01 Trnava, Slovak Republic, and ^cInstitute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic Correspondence e-mail: viktor.vrabel@stuba.sk

Received 23 October 2007; accepted 29 October 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.065; wR factor = 0.137; data-to-parameter ratio = 13.5.

In the molecular structure of the title compound, $C_{14}H_8F_3NO$, the furopyridine ring system and the benzene ring are almost coplanar, making a dihedral angle of 5.5 (1)°. In the crystal structure, molecules are linked into layers parallel to the *ab* plane by intermolecular C-H···N and C-H···F hydrogen bonds. Weak π - π interactions are observed between the furan and benzene rings [centroid-centroid distance = 3.829 (2) Å] of molecules in adjacent layers, resulting in the formation of a three-dimensional network.

Related literature

For related literature, see: Abadi & Brun (2003); Baran *et al.* (2005); Bravo *et al.* (1994); Jung *et al.* (2002); Kücükgüzel *et al.* (2000); Miklovič *et al.* (2004); Navarrete-Vazquez *et al.* (2006); Vrábel *et al.* (2007*a*,*b*). For preparation, see: Bradiaková *et al.* (2008); Gajdoš *et al.* (2006).

Experimental

Crystal data $C_{14}H_8F_3NO$ $M_r = 263.21$ Monoclinic, $P2_1/c$ a = 13.4075 (16) Å b = 12.1237 (9) Å c = 7.3008 (10) Å $\beta = 104.754$ (13)°

 $V = 1147.6 (2) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.13 \text{ mm}^{-1}$ T = 298 (2) K $0.51 \times 0.17 \times 0.02 \text{ mm}$

Data collection

Oxford Diffraction Gemini R CCD	32658 measured reflections
diffractometer	2335 independent reflections
Absorption correction: analytical	1185 reflections with $I > 2\sigma(I)$
(Clark & Reid, 1995)	$R_{\rm int} = 0.058$
$T_{\min} = 0.960, \ T_{\max} = 0.997$	

Refinement

I V S

2

$R[F^2 > 2\sigma(F^2)] = 0.065$	173 parameters
$vR(F^2) = 0.137$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
335 reflections	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

, , ,		<i>,</i>		
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} C6-H6A\cdots N4^{i}\\ C5-H5A\cdots F17^{ii}\end{array}$	0.93 0.93	2.47 2.56	3.397 (5) 3.432 (5)	171 156
Symmetry codes: (i) -x	$x + 1, y - \frac{1}{2}, -z$	$x + \frac{1}{3}$; (ii) $-x + \frac{1}{3}$	$1, y + \frac{1}{2}, -z + \frac{1}{2}$	

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2006); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2006); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 2001); software used to prepare material for publication: *enCIFer* (Allen *et al.*, 2004).

The authors thank the Grant Agency of the Ministry of Education of the Slovak Republic (grant Nos. 1/3584/06 and 1/2449/05), and Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2498).

References

- Abadi, A. H. & Brun, R. (2003). Arzneim.-Forsch. 53, 655-663.
- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Baran, P., Boča, M., Boča, R., Krutošíková, A., Miklovič, J., Pelikán, J. & Titiš, J. (2005). *Polyhedron*, 24, 1510–1516.
- Bradiaková, I., Prónayová, N. & Krutošíková, A. (2008). Chem. Pap. 62. In the press.
- Brandenburg, K. (2001). *DIAMOND*. Release 2.1e. Crystal Impact GbR, Bonn, Germany.
- Bravo, P., Dillido, D. & Resnati, G. (1994). Tetrahedron, 50, 8827-8836.
- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.
- Gajdoš, P., Miklovič, J. & Krutošíková, A. (2006). Khim. Geterotsikl. Soed. pp. 825–831.
- Jung, J. C., Watkins, E. B. & Avery, M. A. (2002). *Tetrahedron*, **58**, 3639–3646. Kücükgüzel, S. G., Rollas, S., Erdeniz, H., Kiranz, A. C., Ekinci, M. & Vidin, A.
- (2000). Eur. J. Med. Chem. 35, 761–771.
- Miklovič, J., Krutošíková, A. & Baran, P. (2004). Acta Cryst. C60, m227–m230.
- Navarrete-Vazquez, G., Rojano-Vilchis, M. M., Yépez-Mulia, L., Meléndez, V., Gerena, L., Hernández-Campos, A., Castillo, R. & Hernández-Luis, F. (2006). *Eur. J. Med. Chem.* 41, 135–141.
- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Vrábel, V., Švorc, L., Juristová, N., Miklovič, J. & Kožíšek, J. (2007a). Acta Cryst. E63, m2427–m2428.
- Vrábel, V., Švorc, L., Juristová, N., Miklovič, J. & Kožíšek, J. (2007b). Acta Cryst. E63, m2112–m2113.

supplementary materials

Acta Cryst. (2007). E63, o4516 [doi:10.1107/S1600536807054062]

2-[3-(Trifluoromethyl)phenyl]furo[2,3-c]pyridine

V. Vrábel, L. Svorc, I. Bradiaková, J. Kozísek and A. Krutosíková

Comment

In recent years, fluorinated compounds have been very important in the pharmaceutical field. Incorporation of an F atom instead of an H atom can alter the course of the reaction as well as biological activities. Introduction of further F atoms in a CF₃ group provides better lipophilicity and the compounds might be pharmacologically more interesting compared to their non-fluorinated analogues. Many heterocyclic compounds, which bear the trifluoromethyl group, possess a wide range of biological activity (Navarrete-Vazquez *et al.*, 2006), as herbicides (Bravo *et al.*, 1994), fungicides (Jung *et al.*, 2002) and inhibitors for platelet aggregation (Kücükgüzel *et al.*, 2000). 7-(Trifluoromethyl)-quinoline derivatives have been evaluated for *in vitro* activity against some parasites in blood (Abadi & Brun, 2003). Furo[3,2-*c*]pyridine and its derivatives represent isoquinoline isosters, in which the benzene ring is replaced by the furan. The pyridine ring of this system can be readily coordinated to metal centers through N-donor atom. Structural characterization of isothiocyanate nickel(II) complexes with furo[3,2-*c*]pyridine and its 2-methyl, 2,3-dimethyl analogues, and [1]benzofuro[3,2-*c*]pyridine (Bzfupy) have been reported (Miklovič *et al.*, 2004; Baran *et al.*, 2005). We report here the crystal structure of the title compound, which is used as an important starting material for the synthesis of tetra- μ -acetato-bis[(benzofuro[3,2-*c*] pyridine)copper(II)] and bis(1-benzofuro[3,2-*c*]pyridine)copper(II)] and bis(1-benzof

The molecular structure of title compound is shown in Fig. 1. The furo[3,2-*c*]pyridine ring system is essentially planar, with an r.m.s. deviation of 0.007 Å. The dihedral angle between the furo[3,2-*c*]pyridine ring system and the benzene ring is 5.5 (1)°. As can be seen from Fig. 2, the intermolecular C6—H6…N4 and C5—H5…F17 interactions (Table 1) link the molecules into layers parallel to the *ab* plane. Neighboring planes of molecules are connected through additional ring stacking interactions [shortest contact is C10…C15 (x, 1/2 - y, 1/2 + z), 3.370 (6) Å], resulting in a three-dimensional framework structure.

Experimental

2-[3-(Trifluoromethyl)phenyl]furo[3,2-*c*]pyridine was prepared by five step synthesis according to literature procedures of Gajdoš *et al.* (2006) and Bradiaková *et al.* (2008).

Refinement

All H atoms were placed in geometrically calculated positions and allowed to ride on their parent atoms, with C—H distances of 0.93 Å and U_{iso} set at 1.2 U_{eq} of the parent atom.

Figures

Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Part of the crystal packing of the title compound. Dashed lines indicate intermolecular C—H···N and C—H···F hydrogen bonds, and short C···C contacts.

2-[3-(Trifluoromethyl)phenyl]furo[2,3-c]pyridine

Crystal date	ı
--------------	---

C ₁₄ H ₈ F ₃ NO	$F_{000} = 536$
$M_r = 263.21$	$D_{\rm x} = 1.523 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 9171 reflections
<i>a</i> = 13.4075 (16) Å	$\theta = 3.3 - 29.4^{\circ}$
b = 12.1237 (9) Å	$\mu = 0.13 \text{ mm}^{-1}$
c = 7.3008 (10) Å	T = 298 (2) K
$\beta = 104.754 \ (13)^{\circ}$	Needle, colourless
V = 1147.6 (2) Å ³	$0.51 \times 0.17 \times 0.02 \text{ mm}$

$$Z = 4$$

Data collection

Oxford Diffraction Gemini R CCD diffractometer	2335 independent reflections
Radiation source: fine-focus sealed tube	1185 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.058$
Detector resolution: 10.4340 pixels mm ⁻¹	$\theta_{\text{max}} = 26.4^{\circ}$
T = 298(2) K	$\theta_{\min} = 4.4^{\circ}$
Rotation method data acquisition using ω and ϕ scans	$h = -16 \rightarrow 16$
Absorption correction: analytical (Clark & Reid, 1995)	$k = -15 \rightarrow 15$
$T_{\min} = 0.960, \ T_{\max} = 0.997$	$l = -9 \rightarrow 9$
32658 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.065$	$w = 1/[\sigma^2(F_0^2) + (0.0009P)^2 + 2.196P]$

	where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.137$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.03	$\Delta \rho_{max} = 0.21 \text{ e } \text{\AA}^{-3}$
2335 reflections	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
173 parameters	Extinction correction: SHELXL97, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Deine and a site 1 a setions at a structure in contrast diment	

Primary atom site location: structure-invariant direct Extinction coefficient: 0.0070 (4)

Secondary atom site location: difference Fourier map

Special details

Experimental. face-indexed (CrysAlis RED; Oxford Diffraction, 2006)

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C2	0.6800 (4)	0.6145 (3)	0.1799 (7)	0.0839 (14)
H2A	0.7327	0.6565	0.1537	0.101*
C3	0.5935 (4)	0.6607 (4)	0.2109 (8)	0.0884 (15)
H3A	0.5884	0.7372	0.2030	0.106*
C5	0.5215 (3)	0.4974 (4)	0.2603 (7)	0.0748 (12)
H5A	0.4677	0.4578	0.2881	0.090*
C6	0.6366 (3)	0.3280 (3)	0.2264 (6)	0.0625 (11)
H6A	0.5994	0.2664	0.2463	0.075*
C7	0.7296 (3)	0.3280 (3)	0.1896 (5)	0.0551 (10)
C8	0.6841 (3)	0.5019 (3)	0.1900 (6)	0.0636 (11)
C9	0.6055 (3)	0.4405 (3)	0.2292 (6)	0.0595 (10)
C10	0.8025 (3)	0.2409 (3)	0.1813 (5)	0.0540 (10)
C11	0.7755 (3)	0.1315 (3)	0.2039 (5)	0.0583 (10)
H11A	0.7107	0.1150	0.2205	0.070*
C12	0.8443 (3)	0.0486 (3)	0.2016 (6)	0.0600 (11)
C13	0.9415 (3)	0.0716 (4)	0.1779 (6)	0.0699 (12)
H13A	0.9881	0.0147	0.1790	0.084*
C14	0.9688 (3)	0.1781 (4)	0.1528 (6)	0.0713 (12)
H14A	1.0335	0.1936	0.1345	0.086*
C15	0.8995 (3)	0.2631 (3)	0.1548 (6)	0.0633 (11)
H15A	0.9183	0.3355	0.1383	0.076*
C16	0.8184 (4)	-0.0687 (4)	0.2311 (8)	0.0783 (13)
N4	0.5155 (3)	0.6069 (3)	0.2514 (6)	0.0838 (11)
01	0.7619 (2)	0.4357 (2)	0.1668 (4)	0.0671 (8)
F17	0.7194 (2)	-0.0846 (2)	0.2133 (6)	0.1261 (14)
F18	0.8665 (3)	-0.1046 (2)	0.4027 (5)	0.1156 (11)

supplementary materials

0.8467 (2)	-0.1372 (2))	0.1143 (5)	0.107	72 (10)	
nent parameters	$(Å^2)$					
U^{11}	U^{22}	U^{33}	U^{12}		U^{13}	U^{23}
0.086 (3)	0.044 (2)	0.132 (4)	-0.004	(2)	0.045 (3)	-0.002 (3)
0.094 (4)	0.047 (2)	0.133 (5)	0.003 (2	3)	0.044 (3)	-0.003 (3)
0.067 (3)	0.056 (3)	0.104 (3)	-0.001	(2)	0.027 (3)	-0.001 (3)
0.061 (3)	0.045 (2)	0.081 (3)	-0.0037	7 (19)	0.018 (2)	0.003 (2)
0.058 (3)	0.041 (2)	0.065 (3)	-0.0053	3 (18)	0.014 (2)	0.0015 (18)
0.065 (3)	0.045 (2)	0.083 (3)	-0.005	(2)	0.025 (2)	-0.006 (2)
0.059 (2)	0.048 (2)	0.073 (3)	0.002 (2	2)	0.019 (2)	0.003 (2)
0.051 (2)	0.050 (2)	0.059 (2)	-0.0002	2 (18)	0.0107 (19)	-0.0034 (18)
0.054 (2)	0.051 (2)	0.070 (3)	0.0008	(19)	0.015 (2)	0.001 (2)
0.056 (2)	0.049 (2)	0.073 (3)	0.0077	(19)	0.013 (2)	0.001 (2)
0.058 (3)	0.063 (3)	0.091 (3)	0.013 (2	2)	0.023 (2)	0.000 (2)
0.055 (3)	0.071 (3)	0.091 (3)	-0.001	(2)	0.023 (2)	-0.001 (2)
0.060 (3)	0.052 (2)	0.078 (3)	-0.002	(2)	0.019 (2)	0.001 (2)
0.071 (3)	0.061 (3)	0.106 (4)	0.013 (2	2)	0.029 (3)	0.002 (3)
0.088 (3)	0.052 (2)	0.116 (3)	0.012 (2	2)	0.034 (2)	0.001 (2)
0.0642 (17)	0.0433 (15)	0.099 (2)	-0.0034	4 (13)	0.0309 (16)	0.0001 (14)
0.0762 (19)	0.0539 (16)	0.258 (4)	-0.000	1 (14)	0.061 (2)	0.012 (2)
0.147 (3)	0.080 (2)	0.120 (3)	0.0169	(19)	0.035 (2)	0.0299 (18)
0.125 (2)	0.0591 (16)	0.148 (3)	0.0073	(16)	0.055 (2)	-0.0197 (17)
	0.8467 (2) ment parameters (U^{11} 0.086 (3) 0.094 (4) 0.067 (3) 0.061 (3) 0.058 (3) 0.059 (2) 0.051 (2) 0.054 (2) 0.056 (2) 0.056 (2) 0.055 (3) 0.060 (3) 0.071 (3) 0.088 (3) 0.0642 (17) 0.0762 (19) 0.125 (2)	$0.8467 (2)$ $-0.1372 (2)$ <i>ment parameters (Å²)</i> U^{11} U^{22} $0.086 (3)$ $0.044 (2)$ $0.094 (4)$ $0.047 (2)$ $0.067 (3)$ $0.056 (3)$ $0.061 (3)$ $0.045 (2)$ $0.058 (3)$ $0.041 (2)$ $0.065 (3)$ $0.045 (2)$ $0.059 (2)$ $0.048 (2)$ $0.051 (2)$ $0.050 (2)$ $0.054 (2)$ $0.051 (2)$ $0.055 (3)$ $0.071 (3)$ $0.060 (3)$ $0.052 (2)$ $0.071 (3)$ $0.061 (3)$ $0.088 (3)$ $0.052 (2)$ $0.0642 (17)$ $0.0433 (15)$ $0.0762 (19)$ $0.0539 (16)$ $0.147 (3)$ $0.080 (2)$ $0.125 (2)$ $0.0591 (16)$	$0.8467 (2)$ $-0.1372 (2)$ ment parameters (\hat{A}^2) U^{11} U^{22} U^{33} $0.086 (3)$ $0.044 (2)$ $0.132 (4)$ $0.094 (4)$ $0.047 (2)$ $0.133 (5)$ $0.067 (3)$ $0.056 (3)$ $0.104 (3)$ $0.061 (3)$ $0.045 (2)$ $0.081 (3)$ $0.058 (3)$ $0.045 (2)$ $0.083 (3)$ $0.055 (3)$ $0.045 (2)$ $0.083 (3)$ $0.059 (2)$ $0.048 (2)$ $0.073 (3)$ $0.051 (2)$ $0.050 (2)$ $0.059 (2)$ $0.054 (2)$ $0.051 (2)$ $0.070 (3)$ $0.056 (2)$ $0.049 (2)$ $0.073 (3)$ $0.058 (3)$ $0.063 (3)$ $0.091 (3)$ $0.055 (3)$ $0.071 (3)$ $0.091 (3)$ $0.060 (3)$ $0.052 (2)$ $0.116 (3)$ $0.0642 (17)$ $0.0433 (15)$ $0.099 (2)$ $0.0762 (19)$ $0.0539 (16)$ $0.258 (4)$ $0.147 (3)$ $0.080 (2)$ $0.120 (3)$	$0.8467(2)$ $-0.1372(2)$ $0.1143(5)$ <i>ment parameters</i> ($Å^2$) U^{11} U^{22} U^{33} U^{12} $0.086(3)$ $0.044(2)$ $0.132(4)$ -0.004 $0.094(4)$ $0.047(2)$ $0.133(5)$ $0.003(2)$ $0.067(3)$ $0.056(3)$ $0.104(3)$ -0.003^2 $0.067(3)$ $0.045(2)$ $0.081(3)$ -0.0053^2 $0.058(3)$ $0.041(2)$ $0.065(3)$ -0.0053^2 $0.058(3)$ $0.045(2)$ $0.083(3)$ -0.0053^2 $0.059(2)$ $0.048(2)$ $0.073(3)$ $0.002(2)$ $0.051(2)$ $0.059(2)$ -0.0002^2 $0.054(2)$ $0.051(2)$ $0.070(3)$ 0.0008 $0.056(2)$ $0.049(2)$ $0.073(3)$ 0.0077^2 $0.058(3)$ $0.063(3)$ $0.091(3)$ -0.001^2 $0.055(3)$ $0.071(3)$ $0.091(3)$ -0.002^2 $0.071(3)$ $0.061(3)$ $0.012(3)^2$ 0.0072^2 $0.071(3)$ $0.061(3)$ $0.012(3)^2$ 0.002^2 $0.071(3)$ $0.061(3)$ <td>$0.8467 (2)$$-0.1372 (2)$$0.1143 (5)$$0.107$nent parameters ($Å^2$)$U^{11}$$U^{22}$$U^{33}$$U^{12}$$0.086 (3)$$0.044 (2)$$0.132 (4)$$-0.004 (2)$$0.094 (4)$$0.047 (2)$$0.133 (5)$$0.003 (3)$$0.067 (3)$$0.056 (3)$$0.104 (3)$$-0.001 (2)$$0.061 (3)$$0.045 (2)$$0.081 (3)$$-0.0037 (19)$$0.058 (3)$$0.041 (2)$$0.065 (3)$$-0.0053 (18)$$0.065 (3)$$0.045 (2)$$0.083 (3)$$-0.005 (2)$$0.059 (2)$$0.048 (2)$$0.073 (3)$$0.002 (2)$$0.051 (2)$$0.050 (2)$$0.059 (2)$$-0.0002 (18)$$0.054 (2)$$0.051 (2)$$0.070 (3)$$0.0008 (19)$$0.056 (3)$$0.063 (3)$$0.091 (3)$$-0.001 (2)$$0.055 (3)$$0.071 (3)$$0.091 (3)$$-0.002 (2)$$0.055 (3)$$0.071 (3)$$0.091 (3)$$-0.002 (2)$$0.071 (3)$$0.061 (3)$$0.013 (2)$$0.060 (3)$$0.052 (2)$$0.078 (3)$$-0.002 (2)$$0.071 (3)$$0.061 (3)$$0.106 (4)$$0.013 (2)$$0.0642 (17)$$0.0433 (15)$$0.099 (2)$$-0.0034 (13)$$0.0762 (19)$$0.0539 (16)$$0.258 (4)$$-0.0001 (14)$$0.147 (3)$$0.080 (2)$$0.120 (3)$$0.0169 (19)$$0.125 (2)$$0.0591 (16)$$0.148 (3)$$0.0073 (16)$</td> <td>0.8467 (2) -0.1372 (2) 0.1143 (5) 0.1072 (10) nent parameters (Å²) U¹¹ U²² U³³ U¹² U¹³ 0.086 (3) 0.044 (2) 0.132 (4) -0.004 (2) 0.045 (3) 0.094 (4) 0.047 (2) 0.133 (5) 0.003 (3) 0.044 (3) 0.067 (3) 0.056 (3) 0.104 (3) -0.001 (2) 0.027 (3) 0.061 (3) 0.045 (2) 0.081 (3) -0.0037 (19) 0.018 (2) 0.058 (3) 0.041 (2) 0.065 (3) -0.0053 (18) 0.014 (2) 0.056 (3) 0.045 (2) 0.083 (3) -0.005 (2) 0.025 (2) 0.059 (2) 0.048 (2) 0.073 (3) 0.002 (2) 0.019 (2) 0.051 (2) 0.059 (2) -0.0002 (18) 0.0107 (19) 0.054 (2) 0.071 (3) 0.0073 (3) 0.0077 (19) 0.013 (2) 0.058 (3) 0.063 (3) 0.013 (2) 0.023 (2) 0.058 (3) 0.051 (2) 0.078 (3) -0.002 (18) 0.019 (2) 0.055 (3) 0.071 (3) 0.017 (19) 0.013 (2) 0.023 (2) 0.058 (3)<!--</td--></td>	$0.8467 (2)$ $-0.1372 (2)$ $0.1143 (5)$ 0.107 nent parameters ($Å^2$) U^{11} U^{22} U^{33} U^{12} $0.086 (3)$ $0.044 (2)$ $0.132 (4)$ $-0.004 (2)$ $0.094 (4)$ $0.047 (2)$ $0.133 (5)$ $0.003 (3)$ $0.067 (3)$ $0.056 (3)$ $0.104 (3)$ $-0.001 (2)$ $0.061 (3)$ $0.045 (2)$ $0.081 (3)$ $-0.0037 (19)$ $0.058 (3)$ $0.041 (2)$ $0.065 (3)$ $-0.0053 (18)$ $0.065 (3)$ $0.045 (2)$ $0.083 (3)$ $-0.005 (2)$ $0.059 (2)$ $0.048 (2)$ $0.073 (3)$ $0.002 (2)$ $0.051 (2)$ $0.050 (2)$ $0.059 (2)$ $-0.0002 (18)$ $0.054 (2)$ $0.051 (2)$ $0.070 (3)$ $0.0008 (19)$ $0.056 (3)$ $0.063 (3)$ $0.091 (3)$ $-0.001 (2)$ $0.055 (3)$ $0.071 (3)$ $0.091 (3)$ $-0.002 (2)$ $0.055 (3)$ $0.071 (3)$ $0.091 (3)$ $-0.002 (2)$ $0.071 (3)$ $0.061 (3)$ $0.013 (2)$ $0.060 (3)$ $0.052 (2)$ $0.078 (3)$ $-0.002 (2)$ $0.071 (3)$ $0.061 (3)$ $0.106 (4)$ $0.013 (2)$ $0.0642 (17)$ $0.0433 (15)$ $0.099 (2)$ $-0.0034 (13)$ $0.0762 (19)$ $0.0539 (16)$ $0.258 (4)$ $-0.0001 (14)$ $0.147 (3)$ $0.080 (2)$ $0.120 (3)$ $0.0169 (19)$ $0.125 (2)$ $0.0591 (16)$ $0.148 (3)$ $0.0073 (16)$	0.8467 (2) -0.1372 (2) 0.1143 (5) 0.1072 (10) nent parameters (Å ²) U ¹¹ U ²² U ³³ U ¹² U ¹³ 0.086 (3) 0.044 (2) 0.132 (4) -0.004 (2) 0.045 (3) 0.094 (4) 0.047 (2) 0.133 (5) 0.003 (3) 0.044 (3) 0.067 (3) 0.056 (3) 0.104 (3) -0.001 (2) 0.027 (3) 0.061 (3) 0.045 (2) 0.081 (3) -0.0037 (19) 0.018 (2) 0.058 (3) 0.041 (2) 0.065 (3) -0.0053 (18) 0.014 (2) 0.056 (3) 0.045 (2) 0.083 (3) -0.005 (2) 0.025 (2) 0.059 (2) 0.048 (2) 0.073 (3) 0.002 (2) 0.019 (2) 0.051 (2) 0.059 (2) -0.0002 (18) 0.0107 (19) 0.054 (2) 0.071 (3) 0.0073 (3) 0.0077 (19) 0.013 (2) 0.058 (3) 0.063 (3) 0.013 (2) 0.023 (2) 0.058 (3) 0.051 (2) 0.078 (3) -0.002 (18) 0.019 (2) 0.055 (3) 0.071 (3) 0.017 (19) 0.013 (2) 0.023 (2) 0.058 (3) </td

Geometric parameters (Å, °)

C2—C3	1.357 (6)	C10—C11	1.395 (5)
C2—C8	1.368 (5)	C10—C15	1.389 (5)
C2—H2A	0.93	C11—C12	1.367 (5)
C3—N4	1.329 (6)	C11—H11A	0.93
С3—НЗА	0.93	C12—C13	1.385 (5)
C5—N4	1.331 (5)	C12—C16	1.493 (6)
С5—С9	1.388 (5)	C13—C14	1.366 (6)
С5—Н5А	0.93	C13—H13A	0.93
C6—C7	1.341 (5)	C14—C15	1.390 (5)
С6—С9	1.428 (5)	C14—H14A	0.93
С6—Н6А	0.93	C15—H15A	0.93
C7—O1	1.399 (4)	C16—F17	1.314 (5)
C7—C10	1.451 (5)	C16—F19	1.313 (5)
C8—O1	1.360 (4)	C16—F18	1.328 (5)
C8—C9	1.378 (5)		
C3—C2—C8	115.3 (4)	C12-C11-C10	120.1 (4)
С3—С2—Н2А	122.4	C12—C11—H11A	120.0
C8—C2—H2A	122.4	C10-C11-H11A	120.0
N4—C3—C2	126.1 (4)	C11—C12—C13	120.8 (4)
N4—C3—H3A	117.0	C11-C12-C16	121.1 (4)
С2—С3—НЗА	117.0	C13—C12—C16	118.1 (4)

N4—C5—C9	121.9 (4)		C14—C13—C12		120.0 (4)
N4—C5—H5A	119.0		C14—C13—H13A		120.0
С9—С5—Н5А	119.0		C12—C13—H13A		120.0
С7—С6—С9	107.0 (3)		C13—C14—C15		119.8 (4)
С7—С6—Н6А	126.5		C13—C14—H14A		120.1
С9—С6—Н6А	126.5		C15—C14—H14A		120.1
C6—C7—O1	110.8 (3)		C14—C15—C10		120.6 (4)
C6—C7—C10	132.8 (4)		C14—C15—H15A		119.7
O1—C7—C10	116.3 (3)		C10-C15-H15A		119.7
O1—C8—C9	111.0 (3)		F17—C16—F19		107.1 (4)
O1—C8—C2	127.1 (4)		F17—C16—F18		106.3 (4)
C9—C8—C2	121.9 (4)		F19—C16—F18		104.7 (4)
C8—C9—C5	117.4 (4)		F17—C16—C12		113.1 (4)
C8—C9—C6	105.8 (3)		F19—C16—C12		113.1 (4)
С5—С9—С6	136.8 (4)		F18-C16-C12		111.9 (4)
C11—C10—C15	118.7 (4)		C3—N4—C5		117.4 (4)
C11—C10—C7	119.3 (3)		C8—O1—C7		105.4 (3)
C15—C10—C7	122.0 (3)				
C8—C2—C3—N4	0.9 (9)		C10-C11-C12-C16		178.2 (4)
C9—C6—C7—O1	-0.3 (5)		C11—C12—C13—C14		-1.2 (7)
C9—C6—C7—C10	175.4 (4)		C16—C12—C13—C14		-179.2 (4)
C3—C2—C8—O1	-179.3 (4)		C12—C13—C14—C15		1.2 (7)
C3—C2—C8—C9	-0.1 (7)		C13—C14—C15—C10		-0.2 (7)
O1—C8—C9—C5	178.7 (4)		C11—C10—C15—C14		-0.7 (6)
C2—C8—C9—C5	-0.6 (7)		C7—C10—C15—C14		178.1 (4)
O1—C8—C9—C6	-1.1 (5)		C11—C12—C16—F17		15.2 (7)
C2—C8—C9—C6	179.6 (4)		C13—C12—C16—F17		-166.9 (4)
N4—C5—C9—C8	0.6 (7)		C11—C12—C16—F19		137.1 (4)
N4—C5—C9—C6	-179.7 (5)		C13—C12—C16—F19		-45.0 (6)
С7—С6—С9—С8	0.8 (5)		C11—C12—C16—F18		-104.9 (5)
C7—C6—C9—C5	-178.9 (5)		C13—C12—C16—F18		73.1 (5)
C6—C7—C10—C11	4.2 (7)		C2-C3-N4-C5		-1.0 (9)
O1—C7—C10—C11	179.7 (3)		C9—C5—N4—C3		0.2 (7)
C6—C7—C10—C15	-174.6 (4)		C9—C8—O1—C7		0.9 (5)
O1—C7—C10—C15	0.9 (6)		C2-C8-01-C7		-179.8 (5)
C15—C10—C11—C12	0.6 (6)		C6—C7—O1—C8		-0.4 (4)
C7—C10—C11—C12	-178.2 (4)		С10—С7—О1—С8		-176.8 (3)
C10—C11—C12—C13	0.3 (6)				
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A

0.93

0.93

2.47

2.56

Symmetry codes: (i) -x+1, y-1/2, -z+1/2; (ii) -x+1, y+1/2, -z+1/2.

C6—H6A···N4ⁱ

C5—H5A…F17ⁱⁱ

3.397 (5)

3.432 (5)

171

156

Fig. 2